Today we will study (Part I)

- Sampling distribution of a statistic, which is the distribution of all values of that statistic when all possible samples of the same size are taken from the same population.
- How to find sampling distribution of sample means.
- How to interpret the Central Limit Theorem.
- How to apply the Central Limit Theorem to find the probability of a sample mean

The **sampling distribution of a statistic** is the probability distribution of all values of the statistic when all possible samples of the same size \(n \) are taken from the same population.

Sampling Distribution of the Mean

DEFINITION
The sampling distribution of the mean is the probability distribution of sample means, with all samples having the same samples size \(n \) taken from the same population.

Properties of Sampling Distributions of Sample Means

1. The mean of the sample means \(\mu_x \) is equal to the population mean \(\mu \).
 \[
 \mu_x = \mu
 \]
2. The standard deviation of the sample means \(\sigma_x \) is equal to the population standard deviation \(\sigma \) divided by the square root of \(n \).
 \[
 \sigma_x = \frac{\sigma}{\sqrt{n}}
 \]
 \(\sigma_x \) is called the **standard error of the mean**.

Remarks

- The sample mean \(\bar{x} \) varies from sample to sample and is a random variable.
- As a random variable, it has a probability distribution, called the sampling distributions of the mean.
- Some sample statistics, such as \(\bar{x} \) (mean), \(\hat{p} \) (proportion) are good for estimating values of population parameters, whereas others such as the median do not.
- We will see that using sampling distributions one may use sample sizes which represent a tiny percentage of the actual population, and still estimate the population parameters with reasonable accuracy.
- **When working with an individual value from a normally distributed population, use the methods of sections 5.2 and 5.3**
 \[
 z = \frac{x - \mu}{\sigma}
 \]
- **When working with a mean for some sample, be sure to use the value** \(\sigma_x = \frac{\sigma}{\sqrt{n}} \) for the standard deviation of the sample means, then use:
 \[
 z = \frac{\bar{x} - \mu}{\sigma_x} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}
 \]

The Central Limit Theorem

The Central Limit Theorem forms the foundation for the inferential branch of statistics.

<table>
<thead>
<tr>
<th>The Central Limit Theorem and the Sampling Distribution of \bar{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given:</td>
</tr>
<tr>
<td>1. The random variable x has a distribution (which may or may not be normal) with mean μ and standard deviation σ.</td>
</tr>
<tr>
<td>2. Simple random samples all of the same size n are selected from the population. (The samples are selected so that all possible samples of size n have the same chance of being selected.)</td>
</tr>
<tr>
<td>Conclusions:</td>
</tr>
<tr>
<td>1. The distribution of sample means \bar{x} will, as the sample size increases, approach a normal distribution.</td>
</tr>
<tr>
<td>2. The mean of all sample means is the population mean μ.</td>
</tr>
<tr>
<td>$\mu_{\bar{x}} = \mu$ Mean</td>
</tr>
<tr>
<td>3. The standard deviation of all sample means is $\frac{\sigma}{\sqrt{n}}$.</td>
</tr>
<tr>
<td>$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ Standard Deviation</td>
</tr>
<tr>
<td>The standard deviation of the sampling distribution of the sample means, $\sigma_{\bar{x}}$ is also called the standard error of the mean.</td>
</tr>
<tr>
<td>Implementation:</td>
</tr>
<tr>
<td>1. If the original population is not itself normally distributed, then (in general) for samples of size n greater than 30, the distribution of the sample means can be approximated reasonably well by a normal distribution. The approximation gets better as the sample size n becomes larger.</td>
</tr>
<tr>
<td>2. If the original population is itself normally distributed, then the sample means will be normally distributed for any sample size n (not just the values of n larger than 30).</td>
</tr>
</tbody>
</table>

Probability and the Central Limit Theorem

To find the probability that a sample mean \bar{x} will lie within a given interval of the sampling distribution, you must first transform \bar{x} to a z-score.

$$ z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} $$ Round to the nearest hundredth

Remarks

- Note distribution of sample means has the same center as the population, but it is not as spread out (smaller standard deviation).
- The Central Limit Theorem can also be used to investigate rare occurrences. A rare occurrence is one that occurs with a probability of less than 5%.
