We have learned how to find areas (probabilities) under any normal curve on a specified interval by converting the variable x to the standardized variable z. Today we will go the other direction.

- How to find a z-score given the area under the normal curve
- How to transform a z-score to an x-value
- How to find a specific data value of a normal distribution given the probability (or percent)

Finding z-scores

We are given a probability (or percent or area) and wish to determine the relevant z-scores.

Remarks

- Generally the given area will not be in the table, so just use the entry closest to it. If the area is halfway between two area entries then use a z-score halfway between the corresponding z-scores.
- Don’t confuse z-scores and areas. A z-score is a distance along the horizontal axis, but areas are the region under the normal curve.
- Areas are positive or (approximately) zero, but never negative.
- Be careful to choose the correct (left/right) side of the graph.
 - A value separating the top 10% from the other values will be located on the right side of the graph, but a value separating the bottom 10% will be located on the left side of the graph.
 - A z-score must be negative whenever it is located in the left half of the normal distribution.

Transforming a z-Score to an x-Value

To transform a standard z-score to a data value x in a given population, use

$$x = \mu + z\sigma$$

Remark

This is the same formula we have been using.