NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research
Composition of the Essential Oil of Wild Growing Artemisia vulgaris from Erie, Pennsylvania

Jack D. Williams*, Ayman M. Saleh and Dom N. Acharya

*Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA 16546, USA
bCollege of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA

jwilliams@mercyhurst.edu

Received: January 15th, 2012; Accepted: February 22nd, 2012

Essential Oil from wild growing Artemisia vulgaris L. originating in Erie, Pennsylvania was obtained by hydrodistillation of the aerial parts of the plant. Gas chromatographic-mass spectral analysis was used to identify the major volatiles present. Up to 22 components were detected in the essential oils. Germacrene D (25%), Caryophyllene (20%), α-Zingiberene (15%) and Borneol (11%) represent the major components of leaf oil, while the buds were rich in 1,8-Cineole (32%), Camphor (16%), Borneol (9%), and Caryophyllene (5%). trans-2-Hexenal was also detected in the aerial parts of the plant. α-Zingiberene and trans-2-Hexenal have not been previously reported for Artemisia vulgaris L. The major analytes are compared to those from Artemisia vulgaris L., originating outside of the United States.

Keywords: Artemisia vulgaris L., Vulgarole, α-Zingiberene, GC-MS, Mass Spectroscopy, Hydrodistillation, Essential Oil.

Table 1: Essential oil composition of Artemisia vulgaris.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ID°</th>
<th>RI°</th>
<th>AVBO (%)</th>
<th>AVLO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-2-Hexenal</td>
<td>A</td>
<td>850</td>
<td>nd</td>
<td>1.0</td>
</tr>
<tr>
<td>Santolinalactone</td>
<td>B</td>
<td>917</td>
<td>2.2</td>
<td>nd</td>
</tr>
<tr>
<td>α-Pinene</td>
<td>A</td>
<td>933</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Camphene</td>
<td>A</td>
<td>948</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>β-Pinene</td>
<td>A</td>
<td>976</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>1-Octen-3-ol</td>
<td>A</td>
<td>979</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td>p-Cymene</td>
<td>A</td>
<td>1025</td>
<td>2.4</td>
<td>0.2</td>
</tr>
<tr>
<td>1,8-Cineole</td>
<td>A</td>
<td>1031</td>
<td>32.2</td>
<td>1.8</td>
</tr>
<tr>
<td>γ-Terpinene</td>
<td>A</td>
<td>1059</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>Camphor</td>
<td>A</td>
<td>1147</td>
<td>16.3</td>
<td>tr</td>
</tr>
<tr>
<td>Borneol</td>
<td>A</td>
<td>1167</td>
<td>9.0</td>
<td>10.8</td>
</tr>
<tr>
<td>Terpinen-4-ol</td>
<td>A</td>
<td>1179</td>
<td>6.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Bornyl Acetate</td>
<td>A</td>
<td>1288</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>α-Copaene</td>
<td>A</td>
<td>1380</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Caryophyllene</td>
<td>A</td>
<td>1425</td>
<td>5.3</td>
<td>19.6</td>
</tr>
<tr>
<td>α-Humulene</td>
<td>B</td>
<td>1459</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Germacrene D</td>
<td>B</td>
<td>1474</td>
<td>3.2</td>
<td>23.3</td>
</tr>
<tr>
<td>ar-Curcumene</td>
<td>A</td>
<td>1479</td>
<td>0.5</td>
<td>6.0</td>
</tr>
<tr>
<td>β-Selinene</td>
<td>B</td>
<td>1492</td>
<td>2.1</td>
<td>1.2</td>
</tr>
<tr>
<td>α-Zingiberene</td>
<td>A</td>
<td>1498</td>
<td>1.0</td>
<td>14.9</td>
</tr>
<tr>
<td>δ-Cadinene</td>
<td>B</td>
<td>1505</td>
<td>0.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Caryophyllene Oxide</td>
<td>A</td>
<td>1590</td>
<td>3.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Identification: A, mass spectrum (2008 NIST used for all MS comparisons) and retention index matched those of commercially available reference samples; B, mass spectrum and retention index matched literature values from Adams [35] and/or Blagojevic [4].°Retention Index on HP-5MS capillary column relative to a series of n-alkanes, nd=not detected, tr=less than 0.1%.

No additional detection of its presence was found in previously published data (see references in Table 2).

The compound trans-2-hexenal has been documented as being produced in plant wounding [20, 21]. It has been found in extracts from the leaves of Japanese Mugwort [22], but until now has not been detected in Artemisia vulgaris L. The presence of the oxidation product, 2-hexenoic acid, has been reported in the oil from a German sample of Artemisia vulgaris L. [23].

Artemisia vulgaris L., most commonly known as Mugwort, has been studied for its insecticidal [1, 2] and antimicrobial properties [3-5]. In addition, estrogenic flavonoids from this plant have been investigated [6]. The chemical composition of the oil obtained by hydrodistillation of the aerial parts of Artemisia vulgaris L. has been reported from various world regions such as Egypt [7], Cuba [8], Vietnam [9], France [10], Italy [11] and The Republic of Bashkortostan [12]. To our knowledge there are no studies on the composition of the oils obtained by hydrodistillation of the aerial parts of Artemisia vulgaris L. originating from the USA.

Table 1 lists the chemical composition obtained by gas chromatography-mass spectroscopy (GC-MS) analysis of the oils from buds (AVBO) and fresh leaves (AVLO), of Artemisia vulgaris L. growing wild in Erie, PA. during 2010. Quantitative data were obtained from total ion current (TIC) area percentages without the use of internal standards. This method has been used previously to quantify the compositions of essential oils [13, 14] and accounted for over 92% of the volatiles from both the AVBO and the AVLO.

While Vulgarole has been suggested as a marker for A. vulgaris L. [15], it was not detected in the aerial parts of Artemisia vulgaris L. from Erie, PA., although it was found in samples from Italy [16] and Germany [17]. The presence of a single enantiomer was elucidated in 1991 [15]. Vulgarole has however, been reported in a sample of Capsicul using GC-MS [18] and in a sample of Artemisia moorcroftiana Wall from the Kashmir region of India [19].

α-Zingiberene has also not been previously reported for Artemisia vulgaris L.. This compound occurs at relatively high concentrations in Ginger [24], which was used to provide additional conformation of its presence (see experimental).

Table 2 lists the four major components of A. vulgaris L. from Erie Pennsylvania, in addition to published data from other countries. Major analyte composition varies geographically in most, but not all, cases. The major analytes, for example, found in the leaves and buds of the plant from geographically different areas in (Minaga area) and outside (Akatochi and Uokiri areas) of Hiroshima City,
Japan remained essentially the same, although their percentages fluctuated [25]. In addition it has been reported that “A. vulgaris L. from four different British sources gave oils of essentially identical compositions” [26].

It appears that seasonal studies produce similar results. The major analytes in plants from Japan [25], Vietnam [27] and India [28] remain essentially the same, independent of the time of harvest, accompanied by fluctuations in their individual percentages.

The contrast between volatile oil content from the leaves and buds in samples from Erie, Pennsylvania can also be seen in Table 2. AVLO contains less monoterpene and more sesquiterpene than AVBO. This difference can also be noted for A. vulgaris originating from other countries. With this observation it is tempting to speculate on the “leaf/bud” composition for which only aerial parts of the plant were used for analysis.

In some cases the published data reports total analyte composition of less than 75% or greater than 100%. This data should be interpreted with caution. Wherever possible the data in Table 2 are reported for maximum volatile composition.

Experimental

Plant material: Fresh *Artemisia vulgaris* L. plants were collected during July 2010 through August of 2010 from Erie, Pennsylvania. The plant identity was confirmed by Dr. Marlene Cross, Department of Biology, Mercyhurst University. A voucher specimen is deposited in the Herbarium of the Tom Ridge Center, Erie Pennsylvania. The leaves and buds (before flowering) were washed, separated and dried before analysis.

Isolation of Essential Oils: Approximately 334 grams of buds were introduced into a two liter round bottom flask after grinding using a Green Machine (MJ575, Miracle Exclusives, Danbury, CT). Distilled water in the amount of 1.68 L was added and the entire mixture subjected to hydrodistillation using a Clever-disher-type apparatus. Approximately 966 mg of essential oil (AVBO) was collected after four hours. A similar procedure was followed using mature fresh leaves of the plant; 600 grams of which yielded 560 mg of light yellow oil (AVLO). All samples were stored at -4°C but allowed to warm to room temperature (23°C) before analysis.

Gas Chromatography-Mass Spectroscopy Analysis: GG-MS analysis of the oils was performed using an Agilent 7890A gas chromatograph and a 5975C mass selective detector from the same company. Volatile analyte separation was achieved using three different fused silica capillary columns from Agilent Technologies. HP5-MS (30 m x 0.25 mm i.d., film thickness 0.25 µm); DB624 (30 m x 0.25 mm i.d., film thickness 0.32 µm) and CyclodexB (30 m x 0.25 mm i.d., film thickness 0.25 µm).

Carrier Gas: Helium; Constant Flow: 1 mL/min; Injector temperature 250°C; Temperature program for the first two columns:
50°C for 3 min. 5°C/min. to 250°C; 15 min. hold at 250°C. The Cyclosil B column was held isothermally at 140°C and used only to provide additional α-Zingiberene/ar-Curcumene confirmation. The volume injected was 0.1 µL (0.1% solution in methanol), with a split ratio of 1/20. Mass spectra were obtained by electron ionization at 70 eV (ion source 150°C; quad. 230°C; transfer line 250°C).

Identification of Essential Oil Compounds: Wherever possible, mass spectral data and calculated retention indexes for authentic compounds were used for comparison (National Institute of Standards and Technology Library, Scientific Instrument Services, Ringoes, NJ, 2008). Ginger oil (Sigma-Aldrich) was used as a reference sample for α-Zingiberene and ar-Curcumene. Kovats retention indices were calculated relative to C_n-C_{n+2} n-alkanes.

References

Composition of the Essential Oil of Wild Growing *Artemisia vulgaris* from Erie, Pennsylvania
Jack D. Williams, Ayman M. Saleh and Dom N. Acharya

Chemical Composition of the Essential Oils from the Flower, Leaf and Stem of *Lonicera japonica*
Nenad Vukovic, Miroslava Kacaniova, Lukas Hleba and Slobodan Sukdolak

Jasminum sambac Flower Absolutes from India and China – Geographic Variations
Norbert A. Braun and Sherina Sim

In vitro Bioactivity of Essential Oils and Methanol Extracts of *Salvia reuterana* from Iran
Javad Safaei Ghami, Reihaneh Masoomi, Fereshteh Jookar Kashi and Hossein Batooli

Investigation of the Volatile Constituents of Different *Gynura* Species from Two Chinese Origins by SPME/GC-MS
Jian Chen, An Adams, Sven Mangelinckx, Bing-ru Ren, Wei-lin Li, Zheng-tao Wang and Norbert De Kimpe

Volatile from *Michelia champaca* Flower: Comparative analysis by Simultaneous Distillation-Extraction and Solid Phase Microextraction
Disnelys Báez, Diego Morales and Jorge A. Pino

Chemical Composition and Antibacterial Activity of the Essential Oil of *Espeletia nana*
Alexis Peña, Luis Rojas, Rosa Aparicio, Líbia Alarcón, José Gregorio Baptista, Judith Velasco, Juan Carmona and Alfredo Usubillaga

The Composition and Antimicrobial Activities of *Cyperus conglomeratus*, *Desmos chinensis* var. *lawii* and *Cyathocalyx zeylanicus* Essential Oils
Abdulkhader Hisham, Koranappallil B. Rameshkumar, Neelam Sherwani, Salim Al-Saidi and Salma Al-Kindy

Composition, Antimicrobial and Free-radical Scavenging Activities of the Essential Oil of *Plectranthus marrubatus*
Kaleab Asres, Solomon Tadesse, Avijit Mazumder and Franz Bucar

 Constituents and Antimicrobial Activity of the Essential Oils from Flower, Leaf and Stem of *Helichrysum armenium*
Khodam-Ali Oji and Ali Shafaghath

Review/Account

Plant Essential Oils and Mastitis Disease: Their Potential Inhibitory Effects on Pro-inflammatory Cytokine Production in Response to Bacteria Related Inflammation
Ibrahim Taga, Christopher Q. Lan and Illimar Altosaar
Natural Product Communications
2012
Volume 7, Number 5

Contents

Gerald Blunden Award (2011)
On-line (HPLC-NMR) and Off-line Phytochemical Profiling of the Australian Plant, Lasiopetalum macrophyllum
Michael Timmers and Sylvia Urban
551

Original Paper

Iridoid and Phenolic Glycosides from the Roots of Prismatomeris connata
Shixiu Feng, Jijiang Bai, Shengxiang Qiu (Samuel), Yong Li and Tao Chen
561

Effect of some ent-Kaurenes on the Viability of Human Peripheral Blood Mononuclear Cells
Yndra Cordero, Grecia M. Corao, José A. Cova and Alfredo Usubillaga
563

Steroidal Glycosides from Veronica chamaedrys L. Part I. The Structures of Chamaedrosides C, C1, C2, E, E1 and E2
Alexandra Marchenko, Pawel Kintya, Bozena Wyrzykiewicz and Elena Gorincioi
565

Identification of the Plant Origin of the Botanical Biomarkers of Mediterranean type Propolis
Milena Popova, Boryana Trusheva, Simone Cutajar, Daniela Antonova, David Mifsud, Claude Farrugia and Vassya Bankova
569

Alkaloids from Some Amaryllidaceae Species and Their Cholinesterase Activity
Lucie Cahliková, Nina Benesová, Katerina Macáková, Radim Kudlera, Václav Hrstka, Jiří Klimeš, Luděk Jahodář and Lubomír Opletal
571

Phytochemical and Biological Activity Studies of the Bhutanese Medicinal Plant Corydalis crispa
Phurpa Wangchuk, Paul A. Keller, Stephen G. Pyne, Thanapat Sastrarui, Malai Taweechotipatr, Roonglawan Rattanajak, Aunchalee Tonsomboon and Sumalee Kamchonwongpaisan
575

On the Biosynthetic Pathway of Papaverine via (S)-Reticuline – Theoretical vs. Experimental Study
Bojidarka Ivanova and Michael Spitteler
581

Diversification of Exudate Flavonoid Profiles in Further Primula spp.
Theriger Doma Bhutia and Karin M. Valant-Vetschera
587

Three New Biflavonoids from Chinese Dragon’s Blood, Dracaena cochinchinensis
Jing Guan and Shun-Xing Guo
591

Secondary Metabolites from Polar Fractions of Piper umbellatum
Turibio Kulate Tabopda, Anne-Claire Mitaine-0ffer, Tomofumi Miyamoto, Chiaki Tanaka, Bonaventure Tchaleu Ngadjui and Marie-Aleth Lecointre-Dubois
595

A New Antimycobacterial Furanolignan from Leucophyllum frutescens
Blanca Alainis-Garza, Ricardo Salazar-Aranda, Rosalba Ramirez-Duñón, Elvira Garza-González and Noemi Waksman de Torres
597

Water-soluble Constituents of the Heartwood of Streblus asper
Jun Li, Mao-Tong Tang, Qiang Wu, Hong Chen, Xiao-Tao Niu, Xin-Lan Guan, Jian Li, Sheng-Ping Deng, Xiao-Jian Su and Rui-Yun Yang
599

Lichen Depsides and Depsidones Reduce Symptoms of Diseases Caused by Tobacco Mosaic Virus (TMV) in Tobacco Leaves
Ingrid Ramírez, Soledad Araya, Marisa Piovano, Marcela Carvajal, Alvaro Cuadros-Inostroza, Luis Espinoza, Juan Antonio Garbarino and Hugo Peña-Cortés
603

Antioxidant, Hemolytic and Cytotoxic Activities of Senecio Species used in Traditional Medicine of Northwestern Argentina
Emilio Lizarraga, Felipe Castro, Francisco Fernández, Marina P. de Lampasona and César A. N. Catalán
607

Isolation of Antityranosporous Compounds from Viitis repens, a Medicinal Plant of Myanmar
Khine Swe Nyunt, Ahmed Elkhateeb, Yusuhe Tosa, Konsuke Nabata, Ken Katakura and Hideyuki Matsuru
609

Evaluation of Alkaline Activities of Tremetone Derivatives Isolated from the Chilean Altiplano Medicine Parastrephia lepidophylla
Julio Benites, Eunices Gutierrez, José López, Mauricio Rojas, Leonel Rojo, Maria de Céu Costa, Maria Pilar Vinardell and Pedro Buc Calderon
611

Ajuganane: A New Phenolic Compound from Ajuga bracteosa
Iavid Hussain, Naeema Begum, Hidayat Hussain, Farman Ullah Khan, Najeeb Ur Rehman, Ahmed Al-Harrasi and Liaqat Ali
615

Base-mediated Transformations of 3,5-Dibromoverongiaquinol from the Sponge Aplysina sp. to Cavernicolins-1, -2 and a Subereatensin Analogue
Elena A. Santalova
617

The Origin of Virgin Argan Oil’s High Oxidative Stability Unraveled
Saïd Gharby, Hicham Harhar, Dominique Guillaume, Aziza Haddad and Zoubida Charrouf
621

Chemical Composition of Essential Oils from a Multiple Shoot Culture of Telekia speciosa and Different Plant Organs
Anna Wajs-Bonikowska, Anna Stojakowska and Danuta Kalemba
625

Evaluation of Volatile Constituents of Cochlospermum angolense
Michele Leonardi, Silvia Giovanelli, Pier Luigi Cioni, Guido Flamini and Luisa Pistelli
629

GC-MS Analysis of Aroma of Medemia argun (Mama-n-Khanen or Mama-n-Xanin), an Ancient Egyptian Fruit Palm
Arafa I. Hamed, Michele Leonardi, Anna Stochmal, Wieslaw Oleszek and Luisa Pistelli
633

Continued inside backcover